
05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 1/12

Python in 4 sittings: Sitting 4

Introduction to Python

Summary of the 4th(end) session

3rd July, 2021

© pi4py.netlify.app (https://pi4py.netlify.app)

feel free to contact us;

arabindo@protonmail.com (mailto:arabindo@protonmail.com)

kaustavbasu97@gmail.com (mailto:kaustavbasu97@gmail.com)

Let us look back to the last session work once more,
we will add label and cmap(color map) to the plot
In [1]:

import numpy as np

import matplotlib.pyplot as plt

lam = 5.0

k = 2*np.pi/lam

x0 = 1

sep = 20.0

side = 100

pts = 500

spacing = side/pts

x1 = side/2 + sep/2

y1 = side/2

x2 = side/2 - sep/2

y2 = side/2

data = np.zeros([pts, pts], dtype='float64')

for i in range(pts):

 y = spacing*i

 for j in range(pts):

 x = spacing*j

 r1 = np.sqrt((x-x1)**2+(y-y1)**2)

 r2 = np.sqrt((x-x2)**2 + (y-y2)**2)

 data[i,j] = x0*np.sin(k*r1) + x0*np.sin(k*r2)

https://pi4py.netlify.app/
mailto:arabindo@protonmail.com
mailto:kaustavbasu97@gmail.com

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 2/12

In [2]:

Now you can understand, yellowish color means there are
constructive wavefronts and greenish line representing
destructive wavefronts

Warning: Not need to go through every details, scroll down below, you'll see a lot of cmap
options

https://matplotlib.org/stable/tutorials/colors/colormaps.html
(https://matplotlib.org/stable/tutorials/colors/colormaps.html)
choose as per your preference and replace that
summer

A nice reading on image handling: https://matplotlib.org/stable/tutorials/introductory/images.html#sphx-glr-
tutorials-introductory-images-py (https://matplotlib.org/stable/tutorials/introductory/images.html#sphx-glr-
tutorials-introductory-images-py)

Debugging is the most important job to do.
It is difficult to explain, please consult first 10 or 15 min of the video I'm just putting the final code here

 # There are many other option for colorbar and cmap. consult the link given below!

plt.imshow(data, origin='below', cmap='summer')

plt.colorbar()

This will add a bar on the right hand side to undestand the density

plt.show()

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/introductory/images.html#sphx-glr-tutorials-introductory-images-py

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 3/12

In [3]:

Formatted outputs
notation:

print(f'statements {variable1} more statement {variable2}')

equivalent to

print('statements ', variable1, 'more statement ', variable2)

In [4]:

Let's start with simple recursion : Factorial!

enter a number: 5

2.234375

enter a number: 0.45

0.6734375

enter a number: -3

a(0)=2

a(1)=66

a(2)=89

a(3)=6.3

a(4)=5

[2.0, 66.0, 89.0, 6.3, 5.0]

#11---------g-------5

def sqroot(x):

 guess = x/2

 if x>1 :

 lower = 1

 upper = x

 else:

 lower = x

 upper = 1

 while(abs(guess**2-x)>1e-02):

 guess = (upper+lower)/2

 if(guess**2>x): upper = guess

 else : lower = guess

 return guess

while True:

 a = float(input("enter a number: "))

 if(a<0): break

 print(sqroot(a))

a = []

for i in range(5):

 b = float(input(f'a({i})='))

 a.append(b)

print(a)

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 4/12

In [5]:

NOTE: Within a function, if the interpreter encounter a return statement, it'll
ignore the rest of the lines within that function

The Hanoi Problem.
Not so easy to explain in words. You can consult the recorded video, or this awesome video -channel:
Computerphile.

https://www.youtube.com/watch?v=8lhxIOAfDss (https://www.youtube.com/watch?v=8lhxIOAfDss)

In [6]:

120

move A to C

move A to B

move C to B

move A to C

move B to A

move B to C

move A to C

def fact(n):

 if(n==1): return 1

 elif(n==0): return 1

 else:

 b = n*fact(n-1)

 return b

print(fact(5))

def hanoi(n, a, c, b):

 if n==1:

 print('move', a, 'to', c)

 elif n==0: pass

 else:

 hanoi(n-1,a,b,c)

 hanoi(1,a,c,b)

 hanoi(n-1,b,c,a)

hanoi(3,'A','C','B')

https://www.youtube.com/watch?v=8lhxIOAfDss

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 5/12

In [7]:

The problem here is, everytime, you're trying to get fib(n), you're
calculating for the values for n-1,n-2 all upto 1. So there, a huge
computation is going on. This kind of problems lead us to the
concept of Dynamic Programming(DP).
A beautiful visulaisation can be found here: https://visualgo.net/en/recursion (https://visualgo.net/en/recursion)

Intuitively, DP is nothing but a careful brut force mthod.

The idea here is to memorize the calculated value, say you asked for fib(5). Then the program would
required to calculate fib(4), fib(3)...fib(1). So if you can store those value, at a later stage, your program
can use those to reduce the heavy computation. Lead you to less time complexity. But wait, nothing is
free of cost! Although time complexity is reduced heavily(polynomial time complexity), it will cost you
more resources(memory! As you are storing those values)

Let us now rewrite the fib(n) function to illustrate the concepts we
discussed.

0

1

1

2

3

Let's write a simple recursive function for

Fibonacci Sequence

In the session, I did it in

slightly different clumsy notation.

I think, it's a cleaner way!

def fib(n):

 if (n==0):

 f = 0

 elif(n==1):

 f = 1

 else:

 f = fib(n-1) + fib(n-2)

 return f

for i in range(5):

 print(fib(i))

https://visualgo.net/en/recursion

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 6/12

In [8]:

In [12]:

if you now ask for fib(7), it'll calculate f(6) and f(5) only. Rests are available in mem . So the function will
directly put those values and calculate fib(7) for you!

The problem is severe when for a particular value of n you have to calculate
thing for sevaral datapoints. Say 10,000 points is to be calculated for a particular
value of n. Then doing it over and over agin become time consuming

The fact can be demonstrate with Hermite polynomial calculation. This polynomials occurs as the
solution of a differential equation, known as Hermite Differential Equation. You can calculate those
polynomials using a recursion relation. The recursion relation is given by

with base cases:

 and

*** In the recorded video, you'll find that I got stuck. This was because I wrote the formula wrong.

(𝑥) = 2𝑥 (𝑥) − 2(𝑛 − 1) (𝑥)𝐻𝑛 𝐻𝑛−1 𝐻𝑛−2

(𝑥) = 1𝐻0 (𝑥) = 2𝑥𝐻1

0

1

1

2

3

{0: 0, 1: 1, 2: 1, 3: 2, 4: 3}

Create a blank dictionary

to memorise the computed values

mem = dict()

def fib(n):

 if n in mem:

 return mem[n]

 elif (n==0):

 mem[n] = 0

 elif(n==1):

 mem[n] = 1

 else:

 f = fib(n-1) + fib(n-2)

 mem[n] = f

 return mem[n]

for i in range(5):

 print(fib(i))

check the mem dictionary

print(mem)

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 7/12

In [9]:

So if now calculate her(5), it'll calculate her(4), her(3)...her(0). Advantage with
poly dictionary is, later, the the program can use those values to calculate higher
order terms

In [10]:

In [11]:

If look into the result closely, you'll find that is calculated only after . This
is because, there is a term in the recursion relation. So when n=3, was
evaluated, then n reduces to 2 only then was calculated. So the 0 th order
term is appearing later.

𝐻0 𝐻1
𝐻𝑛−2 𝐻1

𝐻0

Out[10]:

array([-1.01122400e+08, -1.01020798e+08, -1.00919278e+08, ...,

 1.00919278e+08, 1.01020798e+08, 1.01122400e+08])

Out[11]:

{1: array([-40. , -39.9919992, -39.9839984, ..., 39.9839984,

 39.9919992, 40.]),

0: array([1., 1., 1., ..., 1., 1., 1.]),

2: array([1598. , 1597.36000001, 1596.72012804, ..., 1596.7201

2804,

 1597.36000001, 1598.]),

3: array([-63760. , -63721.65184544, -63683.31905088, ...,

 63683.31905088, 63721.65184544, 63760.]),

4: array([2540812. , 2538772.0896204 , 2536733.40625868, ...,

 2536733.40625868, 2538772.0896204 , 2540812.]),

5: array([-1.01122400e+08, -1.01020798e+08, -1.00919278e+08, ...,

 1.00919278e+08, 1.01020798e+08, 1.01122400e+08])}

poly = dict()

def her(n):

 # Unlike before, here you have to evaluate the function

 # on the different values of x

 x = np.linspace(-20,20,10000)

 if n in poly: return poly[n]

 elif n==0: val = np.ones(10000)

 elif n==1: val = 2*x

 else: val = 2*x*her(n-1) - 2*(n-1)*her(n-2)

 poly[n] = val

 return poly[n]

her(5)

look into the dictionaary

poly

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 8/12

In [12]:

###

The upcoming part is not included in the recorded video, since
there was no participants, the call was ended. So if you're having
trouble in understanding certain things, feel free to contact us!

###

Now the fun part! You donot need to know the Quantum
Mechanics(QM). Just try to understand how you can have time
varying plots.

The solution of fundamental eqn in QM with potential function of the form give us the
solution of the form

𝑉 (𝑥) = 𝑚1
2
𝜔2𝑥2

(𝑥, 𝑡) = 𝐴 exp(− /2) () ∗ exp(−2𝜋𝑖 𝑡/ℎ)𝜓𝑛 𝑥2 𝑥20 𝐻𝑛
𝑥

𝑥0
𝐸𝑛

Let us noe plot the polynomials

import matplotlib.pyplot as plt

plt.xlim(-2,2)

plt.ylim(-30,30)

var = np.linspace(-20,20,10000)

for i in range(5):

 plt.plot(var, her(i), label=f'$H_{i}(x)$')

plt.legend()

plt.show()

This line is important if you're

running this code from .py file

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 9/12

Where,

Here we will choose

, therefore, we set and

We will do the time-independent part first, that is with t=0. And then will include time part.

= −1𝑖2

= 𝑛 + (1/4𝜋)ℎ𝜔𝐸𝑛

𝐴 = 1

𝑛!𝜋√ 2𝑛 𝑥0√

=𝑥0 ℎ/2𝜋𝑚𝜔
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√

𝑚 = 𝜔 = = 1ℎ

2𝜋
= 1𝑥0 = 𝑛 + 0.5𝐸𝑛

In [13]:

Now let us include the time varying part. We will plot Real and
Imaginary part separately along with the squared norm of
i.e.

For this we will need to import a special class of matplotlib FuncAnimation

If you're using notebook, you must include %matplotlib notebook Otherwise, these interactive plot
won't show up in the notebook.

(𝑥)𝜓𝑛
|𝜓|2

x = np.linspace(-20,20,10000)

n = 4

A = 1/np.sqrt(np.sqrt(np.pi)*np.math.pow(2,n)*np.math.factorial(n))

psi = A*np.exp(-x**2)*her(n)

plt.xlim(-3,3)

plt.ylim(-1,1)

plt.plot(x, psi)

plt.show() #optional for notebook users

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 10/12

In [14]:

Let us look at the arguments of FuncAnimation first

FuncAnimation(figure_to_plot_animation,

animation_function_to_update_data_using_some_parameter,

 init_func=function_to_initialize_the_data,

frames=np.arange(start,end,spacing),

 interval=some_number)

So before we call FuncAnimation in our program we need to have a initialization
function and a function to update data. Then finally, configure a figure to
plot.

Let us set those one by one.

In [15]:

In [16]:

from matplotlib.animation import FuncAnimation

%matplotlib notebook

step1: Define initialization function

def init():

 line1.set_data([],[])

 line2.set_data([],[])

 line3.set_data([],[])

 line = [line1, line2, line3]

 return line

Step 2:

Define the function to update the data

with a parameter, say 't'

def animate(t):

 x = np.linspace(-20,20,10000)

 n = 4

 En = n + .5

 # Evaluate the expressions

 A = 1/np.sqrt(np.sqrt(np.pi)*np.math.pow(2,n)*np.math.factorial(n))

 psi = A*np.exp(-x**2)*her(n)

 re = np.cos(2*np.pi*En*t)*psi

 im = np.sin(2*np.pi*En*t)*psi

 norm = psi * psi

 #updating data

 line1.set_data(x, re)

 line2.set_data(x, im)

 line3.set_data(x, norm)

 return [line1, line2, line3]

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 11/12

In [18]:

<IPython.core.display.Javascript object>

Step 3: Configure a figure

fig = plt.figure()

ax = plt.axes(xlim=(-5,5), ylim=(-1,1))

line1, = ax.plot([],[])

line2, = ax.plot([],[])

line3, = ax.plot([],[])

Three line, object because

We will plot real, imaginary

and the norm

line1.set_label('$Re(\psi(x))$')

line2.set_label('$Im(\psi(x))$')

line3.set_label('$\psi(x)*\psi(x)$')

plt.legend()

That comma after variable name,

help us to create a tuple type data

and Matplotlib convert tuple in a

datatype exclusive to this library

Finally call the FuncAnimation and plot it

anim = FuncAnimation(fig, animate, init_func=init, frames=np.arange(0,20,0.1), inte

plt.show()

05/07/2021 session4_fresh - Jupyter Notebook

localhost:8888/notebooks/Desktop/Pi4Py/session4_fresh.ipynb# 12/12

In [19]:

After running the above block, if you look at the animation
closely, you'll find that the green line is not changing with time.
This is why people call this type of solution to be a stationary
state.

You can save this animation by running

anim.save('filename.mp4')

but use this command before you stop the animation by clicking on the stop button above that interactive plot.
It'll take some time, then the video will appear in the same folder where you kept this this notebook.

Comments for the participants with non Physics background

The situation become more interesting when you take the linear superposition of
the solutions. This is possible because the equation I talked about, known as
Schrödinger equation, is a Linear Differential Equation.

You can add up solutions for different value of n and can plot. I'll include some simple example in the Problem
set.

On the other hand you can solve PDEs by any standard numerical method and use those data to animate the
time evolution. You can do that with FuncAnimation or even with anyother language. Store the solution in a txt
file or dat file and then use GNUPlot or any other plotting software(or library) to visualize(or to animate). I've
already written a tutorial on how to do animation in GNUPlot. If you wish, you can check that out too:
https://arabindo.github.io/animation (https://arabindo.github.io/animation)

That's all for this 4-sitting course. I hope you enjoyed.
Wish you all the best :) ¶

Thank You for being a part of this journey!

anim.save('stationary_f.mp4')

https://arabindo.github.io/animation

