
Python in 4 sittings: Sitting 1

Introduction to Python

Summary of the first class

13th June, 2021

© pi4py.netlify.app

feel free to contact us;

arabindo@protonmail.com

kaustavbasu97@gmail.com

Basic Data Types

As usual we have integers, floats and strings. Here, in Python you really don't need to worry

about defining the data types explicitly. You can just keep using any particular variable with

any data types at different instances of the program. Python interpreter will figure it out for out

(lazyness is awesome! xD).

You can perform comparison operations with different data types (exception: strings).

Example:

True
True
False

Although the result of the comparision operations in the first two lines have
been evaluated as true, if you check their data types, they'll be different. For

that you just need to type type(variable) or type(data)

<class 'int'>
<class 'int'>
<class 'float'>
<class 'str'>

`# This is formatted as code`

print(42==42.00)
print(42.00==00042.00)
print(42=='42') # '42' is a string and 42 is an integer. cool?

var = 42
print(type(var))
print(type(42))
print(type(42.00))
print(type('42'))

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

1 of 10 6/14/21, 20:39

Now, here comes the print statement -

General syntax : print("statements", variable1,
variable2,...)

we have number 5 and 6

Now let's move to the Control statements: Generic
good old IF-ELSE

Let's say we have two numbers a and b , and we want to perform
comparisions between them.

For taking input for a and b from the user, The input() function can be used. You can also

add a prompt to it (although it's not mandatory), by input("statements") ** Remember,

whenever you try store an user-input it gets stored as a string. Therefore, you must convert

those inputs into number(or any other specific type). In the next example we have converted

an input string to float. You can verify the input data type by using the type(variable)

command, as we stated earlier, in line In[2]

enter a number: 10
enter another number: 15
a is less than b

Let's make it a bit prettier:

enter a number: 15

#examples,,,oho by the way a line starts with hash sign,
#it means it's a comment line
#python interpreter will skip those lines
a = 5
b = 6
print("we have number", a, 'and', b)
#one more thing single or double inverted comma will do the same job unless
#you're using inverted comma with in the statements.
#In that case you have to use thise comma alternatively.

a = float(input("enter a number: "))
b = float(input("enter another number: "))
if(a>b):

print("a is grater than b")
elif(a<b): # it means else if, in some places it is not required,

#and in some places it becomes convenient to have
print("a is less than b")

else:
print("a is equal to b")

a = float(input("enter a number: "))
b = float(input("enter another number: "))
if(a>b):

print(a, "is grater than", b)
elif(a<b):

print(a, "is less than", b)
else:

print(a, "is equal to", b)

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

2 of 10 6/14/21, 20:39

enter another number: 15
15.0 is equal to 15.0

notice those are float point now, can you figure it out why so?

General Syntax:

if(logical expressions):
instructions
...
...

elif(logical expressions): #elif and else blocks are optional
instructions
...
...

else:
instructions
...
...

indentations are important. While writing code you must focus on the
indentation!

In other languages like C or C++ or Java, indentation is an optional thing, i.e. even without

indentations, the codes work properly. Do you know the reason? Well, we can use braces

there to segmentify/group different regions of the script.

The purpose of indentation in python:

Segmentification/Grouping.

Beautification.

"Infinite" and "Finite" While Loop

Before that, let's look into boolean datatype. In Python, the values supported

for the said are True and False . Python is a case sensitive language. So
you have to be careful about it. The first letter is capitalized here 'T' and 'F'

We can have local operators too. like and , or and not just as you do in other

languages. For example in C or C++ the equivalent operators are &&, ||

Sometimes it is convenient to use infinite loop and to break the
loop when certain conditions are met.

for example we will print 1 to 10 using an infinite loop. Whenever the varibale reach the value

10 the loop will break Let's try!

CAUTION: IF YOU RUN THIS CODE IT'LL START A
NEVER ENDING (i.e. INFINITE) LOOP.

To STOP, CLICK ON THE SQUARE BOX AT THE TOP OF YOUR SCREEN

num = 0
while True:

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

3 of 10 6/14/21, 20:39

print(num)
num = num + 1

1
2
3
4
5
6
7
8
9
10

We can do the same job in a different way:

general syntax:

while(logical expression):
statements
...
...

Now let's look into the familiar for loop

Syntax:

for var in range(start, end, step):
statements
...
...

start and step arguments in the range are optional. By default those are set to be 0

and 1 respectively.

2
5
8
11
14

Let's talk about function. Perhaps the the second last building block of lerning
a new language. Immediately after LEARNING the function you'll able to do
the regular numerical program you used to write for your academic purpose.

num = 0
while True:

num += 1 # shorthand for n=n+1
print(num)
if(num == 10) : break
you can put the break statement in the next indented line.

for i in range(2,17,3):
print(i)

Notice the output! It doesn't print 17.
It's because the range function is evaluating "upto" the number 17

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

4 of 10 6/14/21, 20:39

Syntax:

def name(arguments):
statements
...
...
retuen the_resut

let's have a simple addition function.

13
Let's try with ccompoisition of print and add function 21

We can have another interesting example. "Collatz"
sequence.

The idea is; take any arbitrary integer. If it is even, divide it by 2 otherwise multiply the

number by 3 and then add 1 to it. Repeat this process. It'll get terminated at n=1. But nobody

knows why!

Enter a number=30
15
46
23
70
35
106
53
160
80
40
20
10
5
16
8
4
2

def addition(a,b):
c = a+b
return c

sum = addition(6,7)
print(sum)
or we can do
print("Let's try with ccompoisition of print and add function", addition(10

if n is odd then n*3+1
if n is even then n/2
def collatz(n):

while (n!=1):
if(n%2==0):

n = n//2 # // means integer division
print(n)

else:
n = 3*n+1
print(n)

user_input = int(input("Enter a number="))
collatz(user_input)

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

5 of 10 6/14/21, 20:39

So, we are at the very end of getting aquainted with a
new programming language.

For any new language you want to learn, the basic steps are the same.

Learn some words

Learn the grammar

Try to use them

Repeat

........................... And you're done!

Now, Let's talk about some inbuilt data
structures

List

These are mutable, that is we can edit the elements of the list. Lists can contain

heterogeneous data unlike C/C++/Fortran array. We denote list by a pair of brackets.

Example;

[2, 3, 4, 5]
['a', 2, 3.45, ['g', 'e']]
3
3.45

We can iterate over list by two different ways,

i. By index

ii. By the elements of the list itself

** NOTE: List index starts from 0

a = [2,3,4,5]
b= ['a',2,3.45,['g','e']]
print(a)
print(b)
print(a[1])
print(b[2])

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

6 of 10 6/14/21, 20:39

Itterating over index
2
['a', 'b']
efg
2.6

Itterating over elements
2
['a', 'b']
efg
2.6

Let's have a 2-D list, that is a list of a list

We will go simple. Say, we have an idendity matrix

[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
----*****-----
1
0
0
0
1
0
0
0
1

As we have said lists are mutable, let's have an
example.

Also note that string and tuple are immutable.

You can convert one data type to another with smple built-in functions. like: tuple(var) ,

list(var) , string(var)

array = [2,['a','b'],'efg', 2.6]

print("Itterating over index")
#len(list_name) return the length of the array
for i in range(len(array)):

print(array[i])
print("------------")
print("Itterating over elements")
for elements in array:

print(elements)

matrix = [[1,0,0],[0,1,0],[0,0,1]]
Print the matrix
for element1 in matrix:

print(element1)
print("----*****-----")
#access the each element and print them
for element1 in matrix:

for element2 in element1:
print(element2)

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

7 of 10 6/14/21, 20:39

[2, 3, 4, 5]
edited a: [2, 3, 'new', 5]
type of a: <class 'list'>
 type of b: <class 'tuple'>

TypeError Traceback (most recent call last)
<ipython-input-14-1a5b0875d144> in <module>
 1 #Let's try to change the element of the tuple
----> 2 b[1] = 'x'

TypeError: 'tuple' object does not support item assignment

You see, it's not allowed. You can try to convert that
tuple or list to a string and can try to do the same.
String element can be accessed in the same manner.

Say if you have a string variable, name='python' then name[2] will return 'y'0. Try

yourself!

Dictionary and all

Unlike string, tuple and list, dictionary are consists of key-value pairs. keys are string type

data where as values could be anything - lists, string, tuples and even can be another

dictionary. We will go easy. Let's say, you want to design a game and you want to keep track

of gems, lifes and the user name of the player. btw, dictionaries are mutable objects!

{'gems': 20, 'life': 3, 'user_name': 'abc123'}
data type of the game: <class 'dict'>

We defined 'a' earlier, so we do not need to do it again,
if you're doing this
in ascript, you should be defining `a` otherwise you'll have an error
print(a)
a[2] = 'new'
print("edited a: ", a)
#convert 'a' in to tuple and assign it to a new variable, say b
b = tuple(a)
print('type of a:',type(a),'\n type of b: ', type(b))
\n means it'll print it in a new line

#Let's try to change the element of the tuple
b[1] = 'x'

#let us create a dictionary, `game`

game = {'gems':20,'life':3, 'user_name':'abc123'}
print(game)
print("data type of the game: ",type(game))

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

8 of 10 6/14/21, 20:39

abc123
life updated: 1

False

True

In the session I was unable to show you issmall
thins with strings. Actual command is islower()
and isupper() ! My bad, sorry! :")

PYTHON

you can try the reverse

let's look into some other methods

isalpha - is the string is consists of anly alphabets

isalnum - is the string consists of alphanumeric type data

isdecimal - is the string consists only of decimals

False
True
False

The very last thing we did, we imported pyperclip

What it does? It is helpful to access your clip board

you can access the elements of the game in the following manner
print(game['user_name'])

as dictionary is mutable you can change the value corresponding to a key
game['life'] -= 1 #equivalent to game['life'] = game['life'] - 1

print('life updated:',game['life'])

#you can check a if a particular key exist in a dictionary or not
'token' in game

'gems' in game

string = 'python'
if string.islower():

string = string.upper()
print(string)

a = '4Abc4543'
print(a.isdecimal())
print(a.isalnum())
print(a.isalpha())

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

9 of 10 6/14/21, 20:39

Before running the block below, copy some text from anywhere you like

I copied this text earlier.

That's it for today!!

Practise this elementary stuffs. We will upload the problem set soon, where you need to show

some of your creativity to solve those problems. Remember, writing a code is just the 5%; the

rest is bug fixing where the learning starts. Before start writing a code, try to write down the

idea on paper, how you'll solve the problem. If you do that, you've already done with the 50%

of your task. Also, we will introduce you to the random library in the problem set. Don't

worry; we will always be there to solve your confusion and to make you comfortable. You're

just an email away!

P.S. We'll try to make the next session less messy. ROFL!

import pyperclip
test = pyperclip.paste()
print(test)

session1_fresh http://localhost:8888/nbconvert/html/session1_fresh.ipynb?dow...

10 of 10 6/14/21, 20:39

